

Toni-Ann McDanie Joseph LoGatto Karan Nahar Daima Sheikh

Using Tech/Al Ethics: Why are we doing this?

01

05

03

METRICS FOR SUCCESS

Ethics measure how well a tool works in human terms

ENHANCE TECHNICAL DESIGN

Ethics guide the design process to ensure the tool is aimed at the right target

BUILD USER TRUST

Jsers are more likely to trust and interact with a company that respects their autonomy and privacy

04

05

SHAPE COMPANY CULTURE

Ethical practices increase work satisfaction and productivity

RISK MITIGATION

Ethics help companies comply with regulations and avoid legal issues

METRICS FOR SUCCESS

- Provide human language/metrics to determine success of AI tools
- Allows people in computer science the language and the metrics to determine whether their tool is actually working
- Makes the machine work better apart from just mathematics

TECHNICAL

- Great numerical success
- Identified everyone who was going to have heart issues in the future
- Very sensitive with high detection rate; technical accomplishment

REALITY

- Flagged many false positives
- Caused unnecessary anxiety
- Ultimately negatively impacted patient autonomy

EXAMPLE: CARDISIO CASE

- Patients would live with anxiety
 fearing a health issue that may never
 happen due to low probability
- Ethics audit allowed us to see the tool wasn't working
 - Not just talking about numerical results; talking about how people live in the real world
- Tool needed to be evaluated in terms of patient autonomy (ethics) instead of purely numerical correctness (mathematics)

ENHANCING TECHNICAL DESIGN

- Understanding ethics empowers designing for success on the right target
- Not how accurate/precise the Al is, but where does the Al aim?
 Not how close to the target, but which target?
- What's more important than how precise or how accurate your data is with respect to your target is WHAT your target is

BUILD USER TRUST

- Users sensing that their fundamental rights are protected are more likely to trust and interact with the device
- Users are more likely to interact with a company when they feel like the company is respecting their autonomy

EXAMPLE: APPLE VS ANDROID

- General consensus amongst users is apple has better privacy
 - Privacy is seen as user right
- Apple ecosystem is built to ensure strong security and privacy controls
- Android's open model allows for greater customization, but leaves users more vulnerable to security breaches and invasive data collection practices

EXAMPLE: SPOTIFY DATA COLLECTION

- Spotify's extensive user data collection leads to privacy concerns
- Users feel uncomfortable with the lack of transparency and control over their personal information
- Data being collected is being used for personalized recommendations and user experience
 - Popular feature, spotify wrapped, demonstrates how much data they collect throughout the year
- Users concerned with potential misuse of data

SHAPE COMPANY CULTURE

- Work satisfaction increases with knowledge of outcomes
- People are more productive at work if they have a sense of/believe in what they are doing
- Ethics encourages people to be engaged in and enjoy their own work

RISK MITIGATION

- Innovation is surpassing legal regulation
- Incorporation of ethics provides justification for decisions about the design of AI models
 - Also clarifies accountability
- Being involved in ethics makes you directly involved in the fundamental decisions in what direction the company goes in when developing products

EXAMPLE: EU AI ACT

- Act was supposed to be publicized about 9 months before it was
 - Just as they were about to release the legislation, ChatGPT, Dall-E, and other LLMs started coming out in droves
- Had to rework the legislation to include these LLMs
 - As they reworked the legislation, more advancements were being made with Al
- Government is having a hard time catching up with technical innovation

EXAMPLE: FACIAL RECOGNITION!

- Facial recognition in public surveillance in London was seen as a tool for enhancing public safety
- The technology has discriminatory biases and potentially violates citizens' privacy
 - Led to criticisms in autonomy
- Ethics audit was necessary to address autonomy concerns

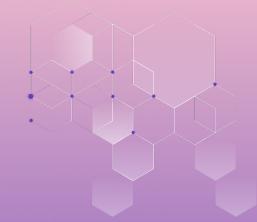
EVALUATIONS (AUDITS)

- Required by law
 - Governments are mandating this ethical action due to the inability of the government to keep up with tech innovation
- Ethics plays a defensive role in ensuring that bad things don't happen and when they do, there is accountability

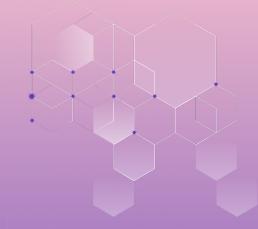
ETHICS AUDIT

- Ethics audit casts technology in ethical/humanist terms as opposed to scientific, economic, or legal terms
- Evaluates how well the technology serves fundamental human rights
- Al/tech ethics audits are composed of three parts:
 - Social/technical scenario
 - Evaluation
 - Report/recommend

Report/Recommend


Evaluate

Social/technical scenario


SOCIAL/TECHNICAL SCENARIO

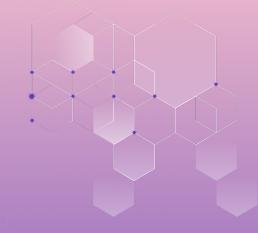
- Gather all stakeholders in a meeting (everyone who is involved in the tool/technology being evaluated)
 - People involved and know about the machine from each angle are gathered in this meeting
- Asking questions: What is it we are talking about? What does the Al/technology do? Who does it do it for? What do you need to know to know what we are talking about?
- Explain to everyone what the see in the machine and ask everyone else if there are any questions or ask how our vision of the machine may differ

SOCIAL/TECHNICAL SCENARIO

- A different explanation may be given to each group of people
- Each group participates by explaining their perspective on how they view the machine
- All of these questions are repeated over and over until everybody understands all aspects of the machine
 - A process of translation from group to group
- Some members of the group take responsibility for writing down what was said
 - Drafted in a google doc
- All members asynchronously read the document, correcting what they have said if necessary

EVALUATE

- The actual audit
 - Takes place in a meeting/zoom
- If the whole group of evaluators is large, group is broken down into smaller groups.
 - If not, a few people are chosen to take the lead
- Typically in these groups there is an ethicist, one computer scientist, and any other related professionals
 - Such as a doctor if it is a medical tool
- Social/technical scenario is available to refer to


EVALUATE

- Use ethical principles (autonomy, privacy, fairness, etc.) to analyze the tool
- Different approaches for evaluation: top-down and bottom-up
- Bottom-up: starts at the user experience of the machine and go to the principles
- Top-down: starts with the principle, and then look at the machine and the user experience of the machine
- Draft in a Google doc
 - Pose all of the issues that come up and results of discussion for each ethics principle
 - This is the heart of the paper; must be written in an organized way

EVALUATION EXAMPLE

- Ethics audit Professor Brusseau partook in about the tech ethics of a music program
- Top-down: At what point does the music being played no longer belong to the original composer? When does it become a new creation?
- Can this player take credit for this music? Or is it repackaging music someone else used?
 - Dignity question
- Bottom up: New way of experiencing music which gives a hearing impaired person a new outlook on music, etc.

REPORT/RECOMMEND

- The Google doc drafted in the evaluation and social/technical scenario sections are converted into academic narrative
 - When done, there is a paper that is ready to be published
- Report is not action-oriented
 - An ethics evaluation may just say we better understand a machine and how it works on a human level
- Major areas of ethics being addressed:
 - Autonomy
 - Privacy
 - Fairness and Explainability

EXAMPLE CASE (MAYA.AI)

- Trying to make a bot (James bot) to answer ethics questions 24/7
 - For students to use when professor Brusseau is not available
- Ethics audit:
 - Gather everyone involved (students, computer scientist(s), professor Brusseau, etc.)
 - Talk about the LLM, where the data comes from, why it is used, etc.
 - Evaluate and understand what it does for autonomy
- Evaluation makes the machine work better.
 - How much performance we are losing versus how much privacy and autonomy we are gaining

